

## SYLLABUS

### 1. Program Information

|                                   |                                                            |  |  |
|-----------------------------------|------------------------------------------------------------|--|--|
| 1.1 Higher education institution  | Technical University of Cluj-Napoca                        |  |  |
| 1.2 Faculty                       | Faculty of Automation and Computer Science                 |  |  |
| 1.3 Department                    | Department of Automation                                   |  |  |
| 1.4 Field of study                | Automation, Applied Informatics and Intelligent Systems    |  |  |
| 1.5 Cycle of studies              | Bachelor                                                   |  |  |
| 1.6 Study Programme/Qualification | Intelligent Automation Systems (dual, in English language) |  |  |
| 1.7 Form of education             | IF – full-time education                                   |  |  |
| 1.8 Course code                   | 34.00                                                      |  |  |

### 2. Course information

|                                             |                                                                                                                |              |     |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------|-----|
| 2.1 Course title                            | System Identification                                                                                          |              |     |
| 2.2 Course lecturer                         | Prof. dr. ing. Lucian Busoniu – <a href="mailto:Lucian.Busoniu@aut.utcluj.ro">Lucian.Busoniu@aut.utcluj.ro</a> |              |     |
| 2.3 Seminar / Laboratory / Project Lecturer | Prof. dr. ing. Lucian Busoniu – <a href="mailto:Lucian.Busoniu@aut.utcluj.ro">Lucian.Busoniu@aut.utcluj.ro</a> |              |     |
| 2.4 Year of study                           | 3                                                                                                              | 2.5 Semester | I   |
| 2.7 Course status                           | 2.6 Type of assessment                                                                                         |              | E   |
|                                             | Formative category (DF, DS, DC)                                                                                |              | DS  |
|                                             | Optionality (DOB, DOP, DFac)                                                                                   |              | DOB |

### 3. Total estimated time

|                                                                                          |    |           |     |         |    |         |   |            |     |         |    |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------|----|-----------|-----|---------|----|---------|---|------------|-----|---------|----|--|--|--|--|--|--|--|--|
| 3.1 Number of hours per week                                                             | 5  | of which: | HEI | Lecture | 2  | Seminar | 0 | Laboratory | 2   | Project | 1  |  |  |  |  |  |  |  |  |
|                                                                                          |    |           | CO  |         |    |         |   |            |     |         |    |  |  |  |  |  |  |  |  |
| 3.2 Number of hours per semester                                                         | 70 | of which: | HEI | Lecture | 28 | Seminar | 0 | Laboratory | 28  | Project | 14 |  |  |  |  |  |  |  |  |
|                                                                                          |    |           | CO  |         |    |         |   |            |     |         |    |  |  |  |  |  |  |  |  |
| 3.3 Distribution of time allocation (hours per semester) for:                            |    |           |     |         |    |         |   |            | HEI | CO      |    |  |  |  |  |  |  |  |  |
| (a) Study based on textbook, course support, bibliography, and notes                     |    |           |     |         |    |         |   |            | 17  |         |    |  |  |  |  |  |  |  |  |
| (b) Additional documentation in library, specialized electronic platforms, and fieldwork |    |           |     |         |    |         |   |            |     |         |    |  |  |  |  |  |  |  |  |
| (c) Preparation of seminars/laboratories, assignments, papers, portfolios and essays     |    |           |     |         |    |         |   |            | 10  |         |    |  |  |  |  |  |  |  |  |
| (d) Tutoring                                                                             |    |           |     |         |    |         |   |            |     |         |    |  |  |  |  |  |  |  |  |
| (e) Examinations                                                                         |    |           |     |         |    |         |   |            | 3   |         |    |  |  |  |  |  |  |  |  |
| (f) Other activities:                                                                    |    |           |     |         |    |         |   |            |     |         |    |  |  |  |  |  |  |  |  |
| 3.4 Total individual study hours (sum (3.3(a)... 3.3(f)))                                |    |           |     |         |    |         |   |            | 30  |         |    |  |  |  |  |  |  |  |  |
| 3.5 Total hours per semester (3.2+3.4)                                                   |    |           |     |         |    |         |   |            | 100 |         |    |  |  |  |  |  |  |  |  |
| 3.6 Number of credits per semester                                                       |    |           |     |         |    |         |   |            | 4   |         |    |  |  |  |  |  |  |  |  |

(HEI = Higher Education Institution, CO = Company)

### 4. Prerequisites (where applicable)

|                              |                                                                                                                                                                                         |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.1 Curriculum Prerequisites | <ul style="list-style-type: none"> <li>Physics; Mathematical analysis; Process modelling; System theory; Fundamentals of electronic circuits; Mechanics</li> </ul>                      |
| 4.2 Competency Prerequisites | <ul style="list-style-type: none"> <li>Special mathematics; Linear algebra and analytical geometry; Numerical calculus; Analytic, programming, and experimental competencies</li> </ul> |

### 5. Conditions (where applicable)

|                                                             |                                                                                                     |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 5.1. Course Organization Conditions                         | <ul style="list-style-type: none"> <li>Amphitheatre, Technical University of Cluj-Napoca</li> </ul> |
| 5.2. Seminar / Laboratory / Project organization conditions | <ul style="list-style-type: none"> <li>Solving the laboratory assignments is mandatory</li> </ul>   |

## 6. Specific Competencies Acquired

|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Professional Competencies | <ul style="list-style-type: none"> <li>PC02 Analyse test data</li> <li>PC05 Conduct quality control analysis</li> <li>PC08 Design automation components</li> <li>PC12 Gather technical information</li> <li>PC19 Prepare production prototypes</li> <li>PC26 Use information technology tools</li> <li>PC27 Execute analytical mathematical calculations</li> <li>PC30 Design control systems</li> <li>PC32 Perform data analysis</li> </ul> |
| Transversal Competencies  | <ul style="list-style-type: none"> <li>TC01 Apply knowledge of science, technology and engineering</li> <li>TC02 Think analitically</li> <li>TC05 Interpret mathematical information</li> </ul>                                                                                                                                                                                                                                              |

## 7. Learning outcomes

|                              |                                                                                                                                                                                                                                                                                                                                  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Knowledge:                   | <ul style="list-style-type: none"> <li>The development of theoretical and experimental knowledge in the field of system modeling, simulation, identification, and analysis.</li> </ul>                                                                                                                                           |
| Skills:                      | <ul style="list-style-type: none"> <li>use the concept of dynamical model for control</li> <li>choose the experiment and input signal</li> <li>choose model type and order</li> <li>identify model parameters from experimental data</li> <li>validate the model and select the best model among several alternatives</li> </ul> |
| Responsibility and autonomy: | <ul style="list-style-type: none"> <li>Technical project execution, reporting, and presentation</li> </ul>                                                                                                                                                                                                                       |

## 8. Course Objectives

|                                     |                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.1 General objective of the course | The student will be formed to choose and apply system identification methods in MATLAB, given an unknown system                                                                                                                                                                                                                                                                     |
| 8.2 Specific objectives             | <p>The student will have the following skills:</p> <ul style="list-style-type: none"> <li>use the concept of dynamical model for control</li> <li>choose the experiment and input signal</li> <li>choose model type and order</li> <li>identify model parameters from experimental data</li> <li>validate the model and select the best model among several alternatives</li> </ul> |

## 9. Contents

| 9.1 Lectures                                                                                                         | No. of hours | Teaching methods              | Obs. |
|----------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------|------|
| 1. Foundations of system identification (dynamical models for control)                                               | 2 hours      |                               |      |
| 2. Identification of first and second order systems from the step response (zero and non-zero initial conditions)    | 2 hours      | - Exposition using the video- |      |
| 2. Identification of first and second order systems from the impulse response (zero and non-zero initial conditions) | 2 hours      |                               |      |

|                                                                                         |         |                                                                                                                               |  |
|-----------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------|--|
| 4. Mathematical foundations: Linear regression and statistics                           | 2 hours | projector and the board<br>- Interactive questions and exercises<br>- Discussions with students<br>- Optional lecture quizzes |  |
| 5. Correlation analysis                                                                 | 2 hours |                                                                                                                               |  |
| 6. Prediction error methods: ARX identification                                         | 2 hours |                                                                                                                               |  |
| 7. Input signals and properties (step, impulse, PRBS, multisine; persistent excitation) | 2 hours |                                                                                                                               |  |
| 8. Prediction error methods: model structures and identification procedure              | 2 hours |                                                                                                                               |  |
| 9. Prediction error methods: identification procedure; optimization                     | 2 hours |                                                                                                                               |  |
| 10. Instrumental variable methods                                                       | 2 hours |                                                                                                                               |  |
| 11. Closed-loop identification                                                          | 2 hours |                                                                                                                               |  |
| 12. Recursive identification                                                            | 2 hours |                                                                                                                               |  |
| 13. Model validation                                                                    | 2 hours |                                                                                                                               |  |
| 14. Practical considerations and closing                                                | 2 hours |                                                                                                                               |  |

#### Bibliography

1. Söderström T., Stoica P. System Identification. Prentice Hall Inc., Hertfordshire, 1989. Available at:  
<http://user.it.uu.se/~ts/bookinfo.html>

2. Ljung L. System Identification - Theory for the User. Prentice Hall, New York, 2006.

| 9.2 Seminar / laboratory / project                                                                               | Hours<br>HEI | Hours<br>CO | Teaching<br>methods                                                                  | Obs.                                                                    |
|------------------------------------------------------------------------------------------------------------------|--------------|-------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Using MATLAB for identification experiments                                                                      | 2            |             | Theoretical and experimental demonstration, conversation, observation, and analysis. | Where feasible, laboratory work is performed on a real DC motor system. |
| Identification of first and second order systems from the step response                                          | 2            |             |                                                                                      |                                                                         |
| Identification of first and second order systems from the impulse response                                       | 2            |             |                                                                                      |                                                                         |
| Linear regression                                                                                                | 2            |             |                                                                                      |                                                                         |
| Correlation analysis                                                                                             | 2            |             |                                                                                      |                                                                         |
| The ARX method                                                                                                   | 2            |             |                                                                                      |                                                                         |
| Input generation and analysis: pseudo binary random signal                                                       | 2            |             |                                                                                      |                                                                         |
| Gauss-Newton method for parameter identification                                                                 | 2            |             |                                                                                      |                                                                         |
| Identification of output-error models                                                                            | 2            |             |                                                                                      |                                                                         |
| The instrumental variables method                                                                                | 2            |             |                                                                                      |                                                                         |
| Closed-loop identification                                                                                       | 2            |             |                                                                                      |                                                                         |
| Recursive least squares and ARX                                                                                  | 2            |             |                                                                                      |                                                                         |
| Model validation                                                                                                 | 2            |             |                                                                                      |                                                                         |
| Practical considerations                                                                                         | 2            |             |                                                                                      |                                                                         |
| <b>Project:</b> Linear regression with polynomial regressors.<br>Nonlinear ARX with a polynomial representation. | 14           |             |                                                                                      |                                                                         |

#### Bibliography

1. Söderström T., Stoica P. System Identification. Prentice Hall Inc., Hertfordshire, 1989. Available at:  
<http://user.it.uu.se/~ts/bookinfo.html>

2. Ljung L. System Identification - Theory for the User. Prentice Hall, New York, 2006.

3. H. Peng et al., RBF-ARX model-based nonlinear system modeling and predictive control with application to a NOx decomposition process, Control Engineering Practice 12, pages 191–203, 2007. Here the model is explained in Sections 2.1-2.2, and uses tunable radial basis functions instead of polynomials.

4. L. Ljung, System Identification, Wiley Encyclopedia of Electrical and Electronics Engineering, 2007. Available as technical report LiTH-ISY-R-2809. See Section 4 for nonlinear models.

**10. Correlation of course content with the expectations of the epistemic community representatives, professional associations, and major employers in the field related to the program**

- Laboratory work focused in the fields of interest of companies active in the local/regional market, as well as internationally.
- Identification methods are a prerequisite for the application of automation: system analysis, controller design, state feedback controllers, etc. These considerations apply to both industry and R&D.

**11. Evaluation**

| Activity Type                       | Evaluation criteria                                       | Evaluation methods                                                                                            | Weight in final grade                                                                                                                                |
|-------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11.1 Lecture                        | Correct solution of proposed problems                     | Written exam, lecture quizzes.                                                                                | 30%                                                                                                                                                  |
| 11.2 Seminar/<br>Laboratory/Project | Using Matlab for identification.<br>Practical experience. | Validated lab solutions;<br>anti-plagiarism check; lab test; lab quizzes; project report and/or presentation. | 70%                                                                                                                                                  |
| 11.3 Minimum Performance Standard   |                                                           |                                                                                                               | Minimum standard of performance: labs and project solved correctly and originally; rounded combined grade at exam, lab tests, and project at least 5 |

|                                   |              |                               |           |
|-----------------------------------|--------------|-------------------------------|-----------|
| Date of completion:<br>15.09.2025 | Lecturers    |                               | Signature |
|                                   | Course       | Prof. dr. eng. Lucian Busoniu |           |
|                                   | Applications | Prof. dr. eng. Lucian Busoniu |           |

|                                                                                              |                                                                         |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Date of approval by the Department of Automation Council<br><br>24.11.2025                   | Director of the Department of Automation<br>Prof.dr.ing. Honoriu VĂLEAN |
| Date of approval by the Faculty of Automation and Computer Science Council<br><br>28.11.2025 | Dean<br>Prof.dr.ing. Vlad MUREŞAN                                       |