

## SYLLABUS

### 1. Program Information

|                                   |                                                            |  |  |
|-----------------------------------|------------------------------------------------------------|--|--|
| 1.1 Higher education institution  | Technical University of Cluj-Napoca                        |  |  |
| 1.2 Faculty                       | Faculty of Automation and Computer Science                 |  |  |
| 1.3 Department                    | Department of Automation                                   |  |  |
| 1.4 Field of study                | Automation, Applied Informatics and Intelligent Systems    |  |  |
| 1.5 Cycle of studies              | Bachelor                                                   |  |  |
| 1.6 Study Programme/Qualification | Intelligent Automation Systems (Dual, in English language) |  |  |
| 1.7 Form of education             | IF – full-time education                                   |  |  |
| 1.8 Course code                   | 16.00                                                      |  |  |

### 2. Course information

|                                 |                                                                 |              |     |
|---------------------------------|-----------------------------------------------------------------|--------------|-----|
| 2.1 Course title                | Statistics and Numerical Calculus                               |              |     |
| 2.2 Course lecturer             | Vlad Mihaly – vlad.mihaly@aut.utcluj.ro                         |              |     |
| 2.3 Seminar/Laboratory Lecturer | Vlad Mihaly – vlad.mihaly@aut.utcluj.ro                         |              |     |
| 2.4 Year of study               | 2                                                               | 2.5 Semester | 1   |
| 2.7 Course status               | Formative category (DF, DS, DC)<br>Optionality (DOB, DOP, DFac) |              | DF  |
|                                 |                                                                 |              | DOB |

### 3. Total estimated time

|                                                                                          |    |           |     |         |    |         |    |            |    |         |   |  |  |  |  |  |
|------------------------------------------------------------------------------------------|----|-----------|-----|---------|----|---------|----|------------|----|---------|---|--|--|--|--|--|
| 3.1 Number of hours per week                                                             | 4  | of which: | HEI | Lecture | 2  | Seminar | 1  | Laboratory | 1  | Project | 0 |  |  |  |  |  |
|                                                                                          |    |           | CO  |         | 0  |         | 0  |            | 0  |         | 0 |  |  |  |  |  |
| 3.2 Number of hours per semester                                                         | 56 | of which: | HEI | Lecture | 28 | Seminar | 14 | Laboratory | 14 | Project | 0 |  |  |  |  |  |
|                                                                                          |    |           | CO  |         | 0  |         | 0  |            | 0  |         | 0 |  |  |  |  |  |
| 3.3 Distribution of time allocation (hours per semester) for:                            |    |           |     |         |    |         |    | HEI        | CO |         |   |  |  |  |  |  |
| (a) Study based on textbook, course support, bibliography, and notes                     |    |           |     |         |    |         |    | 28         | 0  |         |   |  |  |  |  |  |
| (b) Additional documentation in library, specialized electronic platforms, and fieldwork |    |           |     |         |    |         |    | 10         | 0  |         |   |  |  |  |  |  |
| (c) Preparation of seminars/laboratories, assignments, papers, portfolios and essays     |    |           |     |         |    |         |    | 28         | 0  |         |   |  |  |  |  |  |
| (d) Tutoring                                                                             |    |           |     |         |    |         |    | 0          | 0  |         |   |  |  |  |  |  |
| (e) Examinations                                                                         |    |           |     |         |    |         |    | 3          | 0  |         |   |  |  |  |  |  |
| (f) Other activities:                                                                    |    |           |     |         |    |         |    | 0          | 0  |         |   |  |  |  |  |  |
| 3.4 Total individual study hours (sum (3.3(a)... 3.3(f)))                                |    |           |     |         |    |         |    | 69         | 0  |         |   |  |  |  |  |  |
| 3.5 Total hours per semester (3.2+3.4)                                                   |    |           |     |         |    |         |    | 125        | 0  |         |   |  |  |  |  |  |
| 3.6 Number of credits per semester                                                       |    |           |     |         |    |         |    | 5          | 0  |         |   |  |  |  |  |  |

(HEI = Higher Education Institution, CO = Company)

### 4. Prerequisites (where applicable)

|                              |                                                                                                                                                |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.1 Curriculum Prerequisites | Linear Algebra, Calculus, Computer Programming                                                                                                 |
| 4.2 Competency Prerequisites | <ul style="list-style-type: none"> <li>Basic knowledge in linear algebra (matrix computations), calculus, and computer programming.</li> </ul> |

### 5. Conditions (where applicable)

|                                                             |                                                                               |
|-------------------------------------------------------------|-------------------------------------------------------------------------------|
| 5.1. Course Organization Conditions                         | <ul style="list-style-type: none"> <li>Blackboard, Video Projector</li> </ul> |
| 5.2. Seminar / Laboratory / Project organization conditions | <ul style="list-style-type: none"> <li>Blackboard, Video Projector</li> </ul> |

## 6. Specific Competencies Acquired

|                           |                                                                                                                                                                                                                |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Professional Competencies | <ul style="list-style-type: none"> <li>• PC02 Analyze test data</li> <li>• PC24 Think abstractly</li> <li>• PC27 Execute analytical mathematical calculations</li> <li>• PC32 Perform data analysis</li> </ul> |
| Transversal Competencies  | <ul style="list-style-type: none"> <li>• TC02 Think analytically</li> <li>• TC05 Interpret mathematical information</li> </ul>                                                                                 |

## 7. Learning outcomes

|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Knowledge:                   | <ul style="list-style-type: none"> <li>• Understand error sources in numerical computation and the impact on solution accuracy and stability;</li> <li>• Explain key numerical methods (root-finding, numerical integration, interpolation, differential equation solvers);</li> <li>• Describe basic statistical concepts (probability distributions, hypothesis testing, regression).</li> </ul>                                                                                                                    |
| Skills:                      | <ul style="list-style-type: none"> <li>• Apply appropriate numerical techniques to solve mathematical problems commonly arising in engineering design, simulation, and analysis;</li> <li>• Analyze, visualize, and interpret engineering data using statistical tools and methods;</li> <li>• Implement numerical and statistical algorithms using programming tools;</li> <li>• Design and conduct computational experiments, analyze results, and draw conclusions supported by quantitative reasoning.</li> </ul> |
| Responsibility and autonomy: | <ul style="list-style-type: none"> <li>• Critically evaluate the reliability and limitations of computational results and statistical conclusions;</li> <li>• Collaborate effectively in multidisciplinary teams on numerical/statistical analysis projects;</li> <li>• Practice academic integrity in data handling, algorithm development, and interpretation of results.</li> </ul>                                                                                                                                |

## 8. Course Objectives

|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.1 General objective of the course | <ul style="list-style-type: none"> <li>• The course aims to equip students with the fundamental knowledge and practical skills in numerical methods and applied statistics necessary for solving engineering problems, analyzing data, and supporting decision-making in multidisciplinary contexts.</li> <li>• The course emphasizes the integration of mathematical modeling, computational tools, and statistical reasoning to enhance students' ability to design, simulate, and interpret real-world systems with confidence, accuracy, and critical insight.</li> </ul> |
| 8.2 Specific objectives             | <p>Specific objectives of the course are:</p> <ul style="list-style-type: none"> <li>• to apply numerical algorithms for solving nonlinear equations;</li> <li>• to numerically integrate/differentiate functions;</li> <li>• to interpolate curves by given intermediate points;</li> </ul>                                                                                                                                                                                                                                                                                  |

|  |                                                                                                                                                                                                                                                                                                                                                                     |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <ul style="list-style-type: none"> <li>• to use statistical techniques to describe, analyze, and draw conclusions from data;</li> <li>• to implement numerical and statistical methods using appropriate software tools;</li> <li>• to interpret and validate computational and statistical results with attention to error, stability, and reliability.</li> </ul> |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## 9. Contents

| 9.1 Lectures                                                                                                                     | No. of hours | Teaching methods                                                     | Obs. |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------|------|--|--|
| C1. Introduction to Numerical Computing                                                                                          | 2            | Interactive lecturing, case-based teaching, conceptual walkthroughs. |      |  |  |
| C2. Root-Finding Algorithms for Nonlinear Equations                                                                              | 2            |                                                                      |      |  |  |
| C3. Direct and Iterative Methods for Solving Linear Systems                                                                      | 2            |                                                                      |      |  |  |
| C4. Function Approximation and Interpolation Techniques                                                                          | 2            |                                                                      |      |  |  |
| C5. Numerical Differentiation and Error Analysis                                                                                 | 2            |                                                                      |      |  |  |
| C6. Numerical Integration Methods                                                                                                | 2            |                                                                      |      |  |  |
| C7. Solving Ordinary Differential Equations (ODEs) Numerically                                                                   | 2            |                                                                      |      |  |  |
| C8. Introduction to Probability Theory and Random Variables                                                                      | 2            |                                                                      |      |  |  |
| C9. Descriptive Statistics and Data Visualization in Engineering                                                                 | 2            |                                                                      |      |  |  |
| C10. Statistical Inference: Estimation and Hypothesis Testing                                                                    | 2            |                                                                      |      |  |  |
| C11. Linear Regression Models                                                                                                    | 2            |                                                                      |      |  |  |
| C12. Analysis of Variance and Design of Experiments                                                                              | 2            |                                                                      |      |  |  |
| C13. Statistical Process Control and Quality Engineering                                                                         | 2            |                                                                      |      |  |  |
| C14. Time Series Analysis and Forecasting                                                                                        | 2            |                                                                      |      |  |  |
| <b>Bibliography</b>                                                                                                              |              |                                                                      |      |  |  |
| [1]. R. Khouri, <i>Numerical Methods and Modelling for Engineering</i> , Springer International Publishing AG, 2018.             |              |                                                                      |      |  |  |
| [2]. A.K. Jana, <i>Numerical Methods in Engineering - Theory and Process Applications</i> , Cambridge University Press, 2023.    |              |                                                                      |      |  |  |
| [3]. N.J. Higham, <i>Accuracy and Stability of Numerical Algorithms</i> , SIAM, 2002.                                            |              |                                                                      |      |  |  |
| [4]. J. Stoer, R. Bulirsch, R. Bartels, W. Gautschi, <i>Introduction to Numerical Analysis</i> , Springer-Verlag New York, 2010. |              |                                                                      |      |  |  |
| [5]. G.H. Golub, <i>Matrix Computations</i> , Johns Hopkins University Press, 2013.                                              |              |                                                                      |      |  |  |
| [6]. C. Heumann, <i>Introduction to Statistics and Data Analysis</i> , Springer International Publishing, 2018.                  |              |                                                                      |      |  |  |
| [7]. J.L. Hodges, E.L. Lehmann, <i>Basic Concepts of Probability and Statistics</i> , SIAM, 2004.                                |              |                                                                      |      |  |  |

| 9.2 Seminar / laboratory / project              | Hours HEI | Hours CO | Teaching methods                                                                        | Obs. |
|-------------------------------------------------|-----------|----------|-----------------------------------------------------------------------------------------|------|
| Introduction to MATLAB                          | 2         | 0        | Guided coding exercises, collaborative pair programming, mini-labs with real-world data |      |
| Root-Finding Algorithms Implementations         | 2         | 0        |                                                                                         |      |
| Methods for Solving Linear Systems              | 2         | 0        |                                                                                         |      |
| Interpolation Methods                           | 2         | 0        |                                                                                         |      |
| Numerical Integrations and Differential Methods | 6         | 0        |                                                                                         |      |
| Introduction to Python                          | 2         | 0        |                                                                                         |      |
| Basic Statistic Concepts in Python              | 2         | 0        |                                                                                         |      |

|                                      |   |   |  |  |
|--------------------------------------|---|---|--|--|
| Linear Regression Models             | 4 | 0 |  |  |
| Statistical Analysis in Python       | 4 | 0 |  |  |
| Time Series Analysis and Forecasting | 2 | 0 |  |  |

#### Bibliography

[1]. P. Bruce, A. Bruce, P. Gedeck, *Practical Statistics for Data Scientists*, O'Reilly, 2020.  
 [2]. C. Woodford, *Numerical Methods with Worked Examples: MATLAB Edition*. Springer Nature, 2011.

#### 10. Correlation of course content with the expectations of the epistemic community representatives, professional associations, and major employers in the field related to the program

The course content reflects the expectations of the academic and professional community by equipping students with essential computational techniques and statistical tools widely used in engineering practice, scientific research, and data-driven decision-making, aligning with the standards demanded by industry and professional bodies.

#### 11. Evaluation

| Activity Type                                                                                                                                                                                                                              | Evaluation criteria                                 | Evaluation methods              | Weight in final grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------|-----------------------|
| 11.1 Lecture                                                                                                                                                                                                                               | Ability to solve problems and implement algorithms. | Final exam (written and coding) | 50%                   |
| 11.2 Seminar/<br>Laboratory/Project                                                                                                                                                                                                        | Ability to implement algorithms.                    | Homeworks and lab exam          | 50%                   |
| <b>11.3 Minimum Performance Standard</b>                                                                                                                                                                                                   |                                                     |                                 |                       |
| Students must demonstrate the ability to apply fundamental numerical and statistical methods to solve standard engineering problems, interpret results accurately, and justify their approaches with a minimum of 50% overall performance. |                                                     |                                 |                       |

|                                       |              |                             |           |
|---------------------------------------|--------------|-----------------------------|-----------|
| Date of completion:<br><br>15.05.2025 | Lecturers    |                             | Signature |
|                                       | Course       | PhD. Eng. Vlad Mihai MIHALY |           |
|                                       |              | PhD. Eng. Vlad Mihai MIHALY |           |
|                                       | Applications |                             |           |

|                                                                                              |                                                                             |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Date of approval by the Department of Automation Council<br><br>24.11.2025                   | Director of the Department of Automation<br><br>Prof.dr.ing. Honoriu VĂLEAN |
| Date of approval by the Faculty of Automation and Computer Science Council<br><br>28.11.2025 | Dean<br><br>Prof.dr.ing. Vlad MUREŞAN                                       |