

SYLLABUS

1. Program Information

1.1 Higher education institution	Technical University of Cluj-Napoca		
1.2 Faculty	Faculty of Automation and Computer Science		
1.3 Department	Department of Automation		
1.4 Field of study	Automation, Applied Informatics and Intelligent Systems		
1.5 Cycle of studies	Bachelor		
1.6 Study Programme/Qualification	Intelligent Automation Systems (dual, in English language)		
1.7 Form of education	IF – full-time education		
1.8 Course code	19.00		

2. Course information

2.1 Course title	Process Modelling		
2.2 Course lecturer	S.L. dr. ing. Dora Morar dora.sabau@aut.utcluj.ro		
2.3 Seminar / Laboratory / Project Lecturer	Ing. Roxana Sav (Emerson)		
2.4 Year of study	2	2.5 Semester	1
2.7 Course status	Formative category (DF, DS, DC)		DS
	Optionality (DOB, DOP, DFac)		DOB

3. Total estimated time

3.1 Number of hours per week	3	of which:	HEI	Lecture	2	Seminar	0	Laboratory	0	Project	0
			CO		0		0		1		0
3.2 Number of hours per semester		of which:	HEI	Lecture	28	Seminar	0	Laboratory	0	Project	0
			CO		0		0		14		0
3.3 Distribution of time allocation (hours per semester) for:									HEI	CO	
(a) Study based on textbook, course support, bibliography, and notes									25	3	
(b) Additional documentation in library, specialized electronic platforms, and fieldwork									16	3	
(c) Preparation of seminars/laboratories, assignments, papers, portfolios and essays										2	
(d) Tutoring									3	1	
(e) Examinations									3	2	
(f) Other activities:											
3.4 Total individual study hours (sum (3.3(a)... 3.3(f)))									47	11	
3.5 Total hours per semester (3.2+3.4)									75	25	
3.6 Number of credits per semester									3	1	

(HEI = Higher Education Institution, CO = Company)

4. Prerequisites (where applicable)

4.1 Curriculum Prerequisites	<ul style="list-style-type: none"> Physics, Chemistry, Mathematical Analysis
4.2 Competency Prerequisites	<ul style="list-style-type: none"> Numerical Calculus Linear Algebra Understanding chemical processes

5. Conditions (where applicable)

5.1. Course Organization Conditions	<ul style="list-style-type: none"> Access to a projector, internet connection, and Microsoft Office or equivalent tools.
5.2. Seminar / Laboratory / Project organization conditions	<ul style="list-style-type: none"> Laboratory is mandatory

6. Specific Competencies Acquired

Professional Competencies	<ul style="list-style-type: none"> PC02 Analyse test data PC05 Conduct quality control analysis PC08 Design automation components PC12 Gather technical information PC19 Prepare production prototypes PC26 Use information technology tools PC27 Execute analytical mathematical calculations PC30 Design control systems PC32 Perform data analysis
Transversal Competencies	<ul style="list-style-type: none"> TC01 Apply knowledge of science, technology and engineering TC02 Think analitically TC05 Interpret mathematical information

7. Learning outcomes

Knowledge:	<ul style="list-style-type: none"> The student describes the fundamental principles and purposes of process modeling across engineering domains; The student explains the mathematical foundations used to represent physical, chemical and biochemical systems; The student classifies and differentiates types of models used in chemical and biochemical process modeling.
Skills:	<ul style="list-style-type: none"> The students construct mathematical models for various chemical and biochemical processes; The students analyze and evaluate process behaviors by simulating models.
Responsibility and autonomy:	<ul style="list-style-type: none"> The student independently formulate modeling strategies; The students collaborate and communicate effectively in multidisciplinary teams to develop, analyze and improve models.

8. Course Objectives

8.1 General objective of the course	<ul style="list-style-type: none"> Understanding, developing and analyzing models of physical, chemical and biochemical systems of industrial importance.
8.2 Specific objectives	<ul style="list-style-type: none"> Explaining key principles of process modeling and its applications; Select and apply appropriate modeling techniques for different processes; Assess model assumptions and limitations critically; Modeling, simulating and analyzing chemical and biochemical systems;

9. Contents

9.1 Lectures	No. of hours	Teaching methods	Obs.
C1. Fundamentals of process modelling	2		
C2. Mathematical representation of physical systems	2		
C3. Modelling principles in electrical, mechanical and hydraulic domains.	6		
C4. General concepts regarding chemical and biochemical processes	2		
C5-C8 Modeling of chemical processes (classification of models, analysis and modeling, examples)	6	Slide presentation, explanation and demonstrations, case studies and discussions	
C9-C12 Modeling of biochemical processes (classification of models, analysis and modeling, examples)	6		
C13 Analogies	2		
C14 Constructing mathematical models using data obtained through experiments	2		

<p>Bibliography</p> <ol style="list-style-type: none"> 1. Cameron Ian T., Katalin H. <i>Process modelling and model analysis</i>. Vol. 4. Elsevier, 2001. 2. K. Ogata, Modern Control Engineering, 5th edition, Prentice Hall, Pearson, 2010. 3. Amiya K. Jana <i>Chemical process modelling and computer simulation</i>. PHI Learning, 2018. 4. Ghasem N. <i>Modeling and simulation of chemical process systems</i>. CRC Press, 2018. 				
9.2 Seminar / laboratory / project	Hours HEI	Hours CO	Teaching methods	Obs.
Basic elements about process simulators. Introduction to MIMIC and HYSYS – differences, benefits, applicability.		4	Simulations, case studies, teamwork	
Modeling and simulation of chemical processes. Process simulators		4		
Modeling and simulation of biochemical processes. Process simulators		4		
Bibliography 7601 - Mimic Dynamic Simulation 7602 - Mimic Advanced Fluid Modeling Objects 7631 - Dynamic Simulation Introduction 7632 - DeltaV Mimic Introduction Aspen HYSYS Dynamics: Introduction to Dynamic Modeling				

10. Correlation of course content with the expectations of the epistemic community representatives, professional associations, and major employers in the field related to the program

The course prepares students to solve engineering problems efficiently and meet industry demands by focusing on practical model skills and interdisciplinary applications.

11. Evaluation

Activity Type	Evaluation criteria	Evaluation methods	Weight in final grade
11.1 Lecture	Acquired theoretical knowledge about the modeling concepts for industrial processes.	Written exam	C=50%
11.2 Seminar/ Laboratory/Project	Aquisition and proper understanding of the issues addressed during the practical activity.	Written/practical test Continous formative evaluation	L=50%
11.3 Minimum Performance Standard C > 5, L > 5, Final grade = 0.5*C + 0.5*L			

Date of completion:	Lecturers	Title First Name LAST NAME	Signature
	Course	S.I.dr.Ing Dora MORAR	

Date of approval by the Department of Automation Council 24.11.2025	Director of the Department of Automation Prof.dr.ing. Honoriu VĂLEAN
Date of approval by the Faculty of Automation and Computer Science Council 28.11.2025	Dean Prof.dr.ing. Vlad MUREŞAN