

SYLLABUS

1. Program Information

1.1 Higher education institution	Technical University of Cluj-Napoca		
1.2 Faculty	Faculty of Automation and Computer Science		
1.3 Department	Department of Automation		
1.4 Field of study	Automation, Applied Informatics and Intelligent Systems		
1.5 Cycle of studies	Bachelor		
1.6 Study Programme/Qualification	Intelligent Automation Systems (dual, in English language)		
1.7 Form of education	IF – full-time education		
1.8 Course code	21.00		

2. Course information

2.1 Course title	Digital Transformation		
2.2 Course lecturer			
2.3 Seminar / Laboratory / Project Lecturer	<i>Ing. Raluca Andrei (Emerson)</i> <i>Dr.Ing. Alin Dorin Burz (Emerson)</i>		
2.4 Year of study	2	2.5 Semester	1
2.7 Course status	Formative category (DF, DS, DC)		DS
	Optionality (DOB, DOP, DFac)		DOB

3. Total estimated time

3.1 Number of hours per week	4	of which:	HEI	Lecture	0	Seminar	0	Laboratory	0	Project	0					
			CO		0		0		0		4					
3.2 Number of hours per semester	56	of which:	HEI	Lecture	0	Seminar	0	Laboratory	0	Project	0					
			CO		0		0		0		56					
3.3 Distribution of time allocation (hours per semester) for:									HEI	CO						
(a) Study based on textbook, course support, bibliography, and notes									0	8						
(b) Additional documentation in library, specialized electronic platforms, and fieldwork									0	2						
(c) Preparation of seminars/laboratories, assignments, papers, portfolios and essays									0	5						
(d) Tutoring									0	1						
(e) Examinations									0	3						
(f) Other activities:									0	0						
3.4 Total individual study hours (sum (3.3(a)... 3.3(f)))									0	19						
3.5 Total hours per semester (3.2+3.4)									0	75						
3.6 Number of credits per semester									0	5						

(HEI = Higher Education Institution, CO = Company)

4. Prerequisites (where applicable)

4.1 Curriculum Prerequisites	<ul style="list-style-type: none"> Industrial Automation Platforms
4.2 Competency Prerequisites	<ul style="list-style-type: none"> Ability to independently explore technical documentation, troubleshoot problems, and manage project tasks. Ability to solve configuration tasks. Understand and apply control strategies using DCS systems.

5. Conditions (where applicable)

5.1. Course Organization Conditions	NA
5.2. Seminar / Laboratory / Project organization conditions	<ul style="list-style-type: none"> Computer, Specific software

6. Specific Competencies Acquired

Professional Competencies	<ul style="list-style-type: none"> PC01 Adjust engineering designs PC02 Analyse test data PC06 Define technical requirements PC08 Design automation components PC12 Gather technical information PC13 Interact professionally in research and professional environments PC21 Report analysis results PC26 Use information technology tools PC30 Design control systems
Transversal Competencies	<ul style="list-style-type: none"> TC01 Apply knowledge of science, technology and engineering TC03 Demonstrate responsibility TC04 Work in teams TC05 Interpret mathematical information

7. Learning outcomes

Knowledge:	<ul style="list-style-type: none"> Know DCS approach for digital transformation. Know key benefits of DCS.
Skills:	<ul style="list-style-type: none"> Program digital and analog devices using Ovation control builder. Create graphical macros using Graphics builder. Configure Control Modules and realize bulk edit. Configure HMI in DeltaV.
Responsibility and autonomy:	<ul style="list-style-type: none"> Take initiative in analyzing technical specification and proposing solutions. Collaborate in a team responsible for project implementation. Demonstrate responsible use of Ovation/DeltaV applications.

8. Course Objectives

8.1 General objective of the course	<ul style="list-style-type: none"> This course provides a comprehensive understanding of DCS control strategies, fundamentals and configuration principles, with a specialized focus on DeltaV and Ovation. Students will learn about the significance of testing and validation processes in project deliveries.
8.2 Specific objectives	<ul style="list-style-type: none"> Learn to configure control module classes and analog inputs effectively. Master configuration techniques for motors within the PCSD Library framework. Develop proficiency in PID control loop setup and adjustments. Explore practical applications of Bulk Edit in various scenarios. Learn principles and general guidelines for effective HMI graphics design. Create control and device sheets using Ovation Developer Studio. Develop logical sequences and conduct simulations effectively. Learn to interpret signal diagrams and analyze point information. Utilize system viewer for comprehensive system analysis.

9. Contents

9.1 Lectures	No. of hours		Teaching methods	Obs.
9.2 Seminar / laboratory / project	Hours HEI	Hours CO	Teaching methods	Obs.

1. Overview of project organization structures. Steps in project planning. Industry standards and best practices for project management. Introduction to Emerson Tools.	0	4	Presentation of examples, description of software programming environments, additional explanations, exercises, discussions
2. Overview of the PCSD Library. Importance and benefits of using the PCSD Library. Control Module Classes. Analog Input configuration.	0	4	
3. PCSD Library. Motor, PID control loops configuration.	0	4	
4. Introduction to Bulk Edit. General concepts and applications.	0	4	
5. Human Machine Interface. P&ID fundamentals. Importance of DCS Graphics	0	4	
6. Human Machine Interface. Graphics principles and general guidelines. Quality Management. Key principles and practices of quality management.	0	4	
7. Test Deliverables. Importance of thorough testing and validation.	0	4	
8. Ovation Developer Studio. Create control sheets, device sheets, logic and simulation.	0	4	
9. Building logic and implementing control strategies using Ovation Control Builder.	0	4	
10. Ovation applications. Signal Diagram. Point information. System viewer.	0	4	
11. Graphic builder. Creating HMI Graphics.	0	4	
12. Templating. Typicals (devices, input signal processing, PID loops). Graphics Macros and Pop-ups	0	4	
13. High-performance HMI.	0	4	
14. General approach of projects implementation	0	4	

Bibliography

1. OVMAN60-Developer Studio User Guide
2. OVMAN80-Control Builder User Guide
3. OVMAN90-Graphics Builder User Guide
4. PCSD Books Online-DeltaV
5. PAS001-Engineering Level 1

10. Correlation of course content with the expectations of the epistemic community representatives, professional associations, and major employers in the field related to the program

The course content is aligned with DCS industry standards and guidelines, ensuring that students acquire skills relevant for professional certification and meet industry benchmarks.

11. Evaluation

Activity Type	Evaluation criteria	Evaluation methods	Weight in final grade
11.1 Lecture	NA	NA	NA
11.2 Seminar/ Laboratory/Project	Practical execution skills, conceptual explanation, troubleshooting and debugging, use of tools and commands	Practical applications	100%
11.3 Minimum Performance Standard			
5 points out of 10			

Date of completion: 11.05.2025	Program responsible	Conf.dr.ing. Roxana Rusu-Both	
-----------------------------------	------------------------	-------------------------------	--

Date of approval by the Department of Automation Council <u>24.11.2025</u>	Director of the Department of Automation Prof.dr.ing. Honoriu VĂLEAN
Date of approval by the Faculty of Automation and Computer Science Council <u>28.11.2025</u>	Dean Prof.dr.ing. Vlad MUREŞAN