1. Program Information

SYLLABUS

1.1 Higher education institution

Technical University of Cluj-Napoca

1.2 Faculty

Faculty of Automation and Computer Science

1.3 Department

Department of Automation

1.4 Field of study

Automation, Applied Informatics and Intelligent Systems

1.5 Cycle of studies

Bachelor

1.6 Study Programme/Qualification

Intelligent Automation Systems (dual, in English language)

1.7 Form of education

IF — full-time education

1.8 Course code

1.00

2. Course information

2.1 Course title

Computer Programming and Algorithm Design

2.2 Course lecturer

Prof. dr. ing. Honoriu Védlean — honoriu.valean@aut.utcluj.ro

2.3 Seminar / Laboratory / Project
Lecturer

Prof. dr. ing. Honoriu Védlean — honoriu.valean@aut.utcluj.ro

2.4 Year of study 1 |2.5 Semester | 1 |2.6 Type of assessment E
2.7 Course status Formative category (DF, DS, DC) DF
Optionality (DOB, DOP, DFac) DOB

3.Total estimated time

3.1 Number of hours of HEI 2 . 0 2 . 0
. Lecture Seminar Laboratory Project
per week 4 |which: |co 0 0 0
3.2 Number of hours 56 of . i Lecture 28 Seminar 0 Laboratory 28 Project 0
per semester which: [co 0 0 0 0
3.3 Distribution of time allocation (hours per semester) for: HEI co
(a) Study based on textbook, course support, bibliography, and notes 20 0
(b) Additional documentation in library, specialized electronic platforms, and fieldwork 20 0
(c) Preparation of seminars/laboratories, assighments, papers, portfolios and essays 26 0
(d) Tutoring 0 0
(e) Examinations 3 0
(f) Other activities: 0 0
3.4 Total individual study hours (sum (3.3(a)... 3.3(f))) 69 0
3.5 Total hours per semester (3.2+3.4) 125 0
3.6 Number of credits per semester 5 0

(HEI = Higher Education Institution, CO = Company)

4. Prerequisites (where applicable)

4.1 Curriculum Prerequisites °

Basic programming skills in C/C++ language.

4.2 Competency Prerequisites | e

Logical reasoning.
Problem-solving abilities.
Analytical thinking.

5. Conditions (where applicable)

5.1. Course Organization
Conditions

Blackboard/Smartboard, Projector.

5.2. Seminar / Laboratory / .
Project organization conditions

Computers equipped with integrated development environments
(IDEs) capable of compiling and executing C programs.
Laboratory attendance is mandatory.

6. Specific Competencies Acquired

mailto:honoriu.valean@aut.utcluj.ro
mailto:honoriu.valean@aut.utcluj.ro

Professional
Competencies

PCO6 - Define technical requirements
PCO7 - Demonstrate disciplinary expertise
PC17 - Operate open source software
PC23 - Synthesise information

PC24 - Think abstractly

PC26 - Use information technology tools

Transversal
Competencies

TCO02 - Think analitically
TCO3 - Demonstrate responsability

7. Learning outcome

S

Knowledge:

Understand the fundamental concepts of structured programming using the C
language.

Describe and analyze the principles of algorithms and data structures.

Explain different algorithm design techniques such as recursion, divide and
conquer, greedy methods, and dynamic programming.

Identify and evaluate the efficiency and computational complexity of algorithms.

Skills:

Write, debug, and test C programs using appropriate programming constructs.
Design and implement algorithms for problem-solving using data structures such
as lists, stacks, queues, trees, and graphs.

Apply modular and structured programming techniques for software
development.

Evaluate and compare algorithm performance through experimentation and
analysis.

Responsibility
and autonomy:

Work independently and collaboratively to design and implement programming
solutions.

Demonstrate responsibility in testing, debugging, and documenting code.
Manage time and resources effectively during laboratory and project activities.
Show initiative in exploring alternative solutions and optimizing algorithm
performance.

8. Course Objectives

8.1 General
objective of the
course

Provide students a solid foundation in computer programming and algorithm
design, enabling them to develop efficient, structured, and well-documented
software solutions using the C programming language.

8.2 Specific
objectives

Understand and apply the fundamental concepts of structured and modular
programming.

Design and implement algorithms for problem-solving using appropriate data
structures such as lists, trees, graphs or hash tables.

Develop programs in C that demonstrate efficient use of functions, pointers, and
file handling.

Analyze and compare algorithm performance and computational efficiency.
Apply systematic testing, debugging, and documentation practices in program
development.

9. Contents

No. of .

9.1 Lectures Teaching methods Obs.
hours

Introduction and brief history of computing. Overview of) Presentations;

hardware components. Demonstrations;

Problem-solving steps and methodologies. Introduction to
the C programming language: variables and expressions.

Arrays and statements.

Functions and header files.

Pointers and pointer operations.

Structures, unions, and enumerations.

Bit fields. Character and string functions. Standard library
functions in C.

N ININININI N

Working with files and data streams.

Recursion and functions with variable arguments.

Modular programming principles.

Module testing using the Google Test framework.

NIN|INN

The C preprocessor: directives and macros. Introduction to
assembly programming in C.

Basic concepts of concurrent programming and embedded
systems.

Syntactic and semantic error handling in C.

Collaborative Learning;
Case Studies and Code
Analysis;

Interactive Discussions
and Q&A Sessions;

Bibliography:

[1] T. Bailey, “An Introduction to the C Programming Language and Software Design.” Available [Online]:
https://www-personal.acfr.usyd.edu.au/tbailey/ctext/ctext.pdf.

[2] P. Deitel and H. Deitel, C: How to Program, 8th ed., Global ed. Harlow, England: Pearson Education,

2016. Available [Online]:

https://faculty.ksu.edu.sa/sites/default/files/c how to program with an introduction to c global ed

ition 8th edition.pdf.

9.2 Seminar / laboratory / project :CE’IWS Egurs Teaching methods Obs.
Algorithms: definitions, fundamentals, and performance) 0
analysis.
Lists: types and representations, including singly and doubly) 0
linked dynamic lists; traversing and managing lists.
List operations: insertion, deletion, and updating of 5 0
elements.
Stacks and queues: principles and specific operations. 2 0
Fundamental sorting algorithms: bubble sort, insertion sort,
selection sort, merge sort, quicksort, counting sort, and 2 0
radix sort. .
Sets and set operations. 2 0 Hal.’lds-On Practlce.;
- - - - Guided Programming
Trees: types and representations, including binary trees, e
balanced trees, and AVL trees. Creation and in-memory .
. . 2 0 | Debugging and Code

representation of trees. Tree traversal techniques. Tree Analvsis Activities:

. y ;
operations: insertion, deletion, and updating.
Search algorithms in trees. Applications of trees in linguistics 5 0
(2-3 and 2-3-4 trees) and in coding (Huffman coding).
Graphs: types and representations, graph traversal
techniques, and graph operations (insertion, deletion, 2 0
updating).
Problem-solving using graphs: shortest path algorithms
(Dijkstra’s and Floyd'’s algorithms) and minimum spanning 2 0
tree algorithms (Kruskal’s and Prim’s).
Hash tables: representation and applications. 2 0

https://www-personal.acfr.usyd.edu.au/tbailey/ctext/ctext.pdf
https://faculty.ksu.edu.sa/sites/default/files/c_how_to_program_with_an_introduction_to_c_global_edition_8th_edition.pdf
https://faculty.ksu.edu.sa/sites/default/files/c_how_to_program_with_an_introduction_to_c_global_edition_8th_edition.pdf

General methods for algorithm development: recursive
algorithms, backtracking, divide and conquer, greedy 2 0
method, and branch-and-bound technique.

Algorithms: definitions, fundamentals, and performance
analysis.

Lists: types and representations, including singly and doubly
linked dynamic lists; traversing and managing lists.

Bibliography:

[1] T. Bailey, “An Introduction to the C Programming Language and Software Design.” Available:
https://www-personal.acfr.usyd.edu.au/tbailey/ctext/ctext.pdf.

[2] P. Deitel and H. Deitel, C: How to Program, 8th ed., Global ed. Harlow, England: Pearson Education,
2016. Available [Online]:

https://faculty.ksu.edu.sa/sites/default/files/c how to program with an introduction to c global ed
ition 8th edition.pdf.

10. Correlation of course content with the expectations of the epistemic community representatives,
professional associations, and major employers in the field related to the program

The course content is aligned with the curricula of other technical universities and provides the essential
knowledge and practical skills required by industry and employers in the areas of programming, software
development, and algorithm design.

11. Evaluation

Activity Type Evaluation criteria Evaluation methods Weight in
final grade
11.1 Lecture Understanding of theoretlcgl N Written Exam 60%
concepts and problem-solving ability.
Application of programming and
11.2 Seminar/ algorithm design concepts.
: . . L T 409
Laboratory/Project Accuracy and clarity in presenting LBl CH: 0%
results.
11.3 Minimum Performance Standard
Laboratory test grade > 5;
Exam grade 2> 5;
D f
ate o . Lecturers Title First Name Last Name Signature
completion:
15.09.2025 Course Prof. dr. ing. Honoriu Vdlean
Prof. dr. ing. Honoriu Vélean
Applications
Date of approval by the Department of Automation Council | Director of the Department of
Automation
24.11.2025 Prof.dr.ing. Honoriu VALEAN
Date of approval by the Faculty of Automation and Dean
Computer Science Council Prof.dr.ing. Vlad MURESAN
28.11.2025

https://www-personal.acfr.usyd.edu.au/tbailey/ctext/ctext.pdf
https://faculty.ksu.edu.sa/sites/default/files/c_how_to_program_with_an_introduction_to_c_global_edition_8th_edition.pdf
https://faculty.ksu.edu.sa/sites/default/files/c_how_to_program_with_an_introduction_to_c_global_edition_8th_edition.pdf
Lee
dept

Lee
CF

